Extensions 1→N→G→Q→1 with N=C2 and Q=C243C4

Direct product G=N×Q with N=C2 and Q=C243C4
dρLabelID
C2×C243C432C2xC2^4:3C4128,1009


Non-split extensions G=N.Q with N=C2 and Q=C243C4
extensionφ:Q→Aut NdρLabelID
C2.1(C243C4) = C24.17Q8central extension (φ=1)64C2.1(C2^4:3C4)128,165
C2.2(C243C4) = C243C8central extension (φ=1)32C2.2(C2^4:3C4)128,511
C2.3(C243C4) = C24.50D4central stem extension (φ=1)64C2.3(C2^4:3C4)128,170
C2.4(C243C4) = C24.636C23central stem extension (φ=1)128C2.4(C2^4:3C4)128,178
C2.5(C243C4) = C24.51(C2×C4)central stem extension (φ=1)64C2.5(C2^4:3C4)128,512
C2.6(C243C4) = C25⋊C4central stem extension (φ=1)16C2.6(C2^4:3C4)128,513
C2.7(C243C4) = C24.165C23central stem extension (φ=1)32C2.7(C2^4:3C4)128,514
C2.8(C243C4) = C25.C4central stem extension (φ=1)16C2.8(C2^4:3C4)128,515
C2.9(C243C4) = C4.C22≀C2central stem extension (φ=1)32C2.9(C2^4:3C4)128,516
C2.10(C243C4) = (C23×C4).C4central stem extension (φ=1)32C2.10(C2^4:3C4)128,517
C2.11(C243C4) = C23.35D8central stem extension (φ=1)32C2.11(C2^4:3C4)128,518
C2.12(C243C4) = C24.155D4central stem extension (φ=1)64C2.12(C2^4:3C4)128,519
C2.13(C243C4) = C24.65D4central stem extension (φ=1)64C2.13(C2^4:3C4)128,520
C2.14(C243C4) = C24.66D4central stem extension (φ=1)32C2.14(C2^4:3C4)128,521
C2.15(C243C4) = 2+ 1+42C4central stem extension (φ=1)32C2.15(C2^4:3C4)128,522
C2.16(C243C4) = 2+ 1+4.2C4central stem extension (φ=1)324C2.16(C2^4:3C4)128,523
C2.17(C243C4) = 2+ 1+43C4central stem extension (φ=1)32C2.17(C2^4:3C4)128,524
C2.18(C243C4) = 2- 1+42C4central stem extension (φ=1)32C2.18(C2^4:3C4)128,525
C2.19(C243C4) = 2+ 1+44C4central stem extension (φ=1)324C2.19(C2^4:3C4)128,526
C2.20(C243C4) = C4○D4.D4central stem extension (φ=1)168+C2.20(C2^4:3C4)128,527
C2.21(C243C4) = (C22×Q8)⋊C4central stem extension (φ=1)328-C2.21(C2^4:3C4)128,528

׿
×
𝔽